Single Molecule Experiments Reveal the Dynamic Heterogeneity and Exchange Time Scales of Polystyrene near the Glass Transition

نویسندگان

  • Keewook Paeng
  • Laura J. Kaufman
چکیده

In a polymeric material near its glass transition temperature, segmental dynamics of a given spatial region may differ considerably from that of neighboring regions without apparent structural origin, analogous to the supercooled liquid state of low molecular weight glass formers. Given that the supercooled liquid state is a (metastable) equilibrium state, spatial variations in dynamics are expected to average out in time, consistent with ergodicity of the system. By probing the rotations of fluorescent guest molecules, local segmental dynamics of polystyrene was scrutinized molecule by molecule. Two perylene dicarboximide dyes were investigated as potential reporters, and one of these was found to report a substantial proportion of the dynamic heterogeneity of the host polystyrene. Using this probe, we demonstrate that the polystyrene system is ergodic and characterize time scales over which molecules experience changes to their dynamics. We identify a characteristic time scale of exchange much longer than the structural relaxation of the host segmental dynamics, consistent with both previous studies on polystyrene and studies on small molecule glass formers. Moreover, we show that dynamic exchange spans a wide range of time scales from <150 to ∼35 000 times the segmental relaxation time of the polystyrene.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ideal probe single-molecule experiments reveal the intrinsic dynamic heterogeneity of a supercooled liquid.

The concept of dynamic heterogeneity and the picture of the supercooled liquid as a mosaic of environments with distinct dynamics that interchange in time have been invoked to explain the nonexponential relaxations measured in these systems. The spatial extent and temporal persistence of these regions of distinct dynamics have remained challenging to identify. Here, single-molecule fluorescence...

متن کامل

Revealing and resolving degeneracies in stretching exponents in temporally heterogeneous environments.

Supercooled liquids are proposed to be dynamically heterogeneous, with regions exhibiting relaxation time scales that vary in space and time. Measurement of the distribution of such time scales could be an important test of various proposed theories of vitrification. Single molecule fluorescence experiments attempt to uncover this distribution, typically by embedding single molecule probes into...

متن کامل

Modification of Polyaniline/Polystyrene and Polyaniline/Metal Oxide Structure by Surfactant

Polyaniline/polystyrene (PAni/PS) composites were prepared in aqueous solution by polymerization of styrene and aniline in two-stages. Firstly styrene polymerize by using Ammonium persulfate (APS) as an oxidant in the presence of various surfactants such as poly(vinyl pyrrolidone) (PVP), hydroxypropylcellulose (HPC), poly(vinyl alcohol) (PVA) and surfactive dopant sodium dodecylbenzenesulfonate...

متن کامل

Fabrication and Characterization of Nanostructured TiO2 and Turmeric Spent Incorporated Polystyrene Hybrid Nano Composites

A series of polystyrene hybrid nanocomposites have been fabricated with varying amounts of TiO2 viz., 0, 0.5 and 1 % w/w along with 3% TS by in-situ polymerization method. The influence of surface modified TiO2 nanoparticles on the thermal properties of PS matrix was examined using thermogravimetry and differential scanning calorimetry. Thermal characteristics of the polystyrene/TS/TiO2 hybrid ...

متن کامل

Spatial and temporal dynamical heterogeneities approaching the binary colloidal glass transition†

We study concentrated binary colloidal suspensions, a model system which has a glass transition as the volume fraction f of particles is increased. We use confocal microscopy to directly observe particle motion within dense samples with f ranging from 0.4 to 0.7. Our binary mixtures have a particle diameter ratio dS/dL 1⁄4 1/1.3 and particle number ratio NS/NL 1⁄4 1.56, which are chosen to inhi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016